Atelocollagen Sponge MIGHTY scaffold for bone and cartilage research | Koken Co. Ltd.

Show product listProduct list

Atelocollagen Sponge, MIGHTY

Outline

Atelocollagen sponge MIGHTY consists primarily of type I atelocollagen derived from bovine dermis and can withstand compressive loadings of up to 40 kPa. Culturing cells in MIGHTY under cyclic compressive loading simulates the in vivo environment for evaluating cell function. MIGHTY is also useful as a scaffold for  3D culture.

Applications

  • 3D-culture-in-Mighty

    3D culture

  • Mechanical stress culture

  • Cell transplantation

  • Sustained release carrier

Features

  • Retains structural rigidity during repeated compressive loadings of 40 kPa.

  • Sized for 96-well plates.

  • It is biodegradable and suitable for cell transplantation

Type of collagen

Bovine hide derived atelocollagen

  • Cross-sectional view of an SEM image of MIGHTY

  • Cross-sectional view image of NIH3T3 fibroblasts, seeded in a MIGHTY
    (live cell imaging by fluorescence microscopy)

Cat. No. Product Packaging Price
CSM-25 Atelocollagen Sponge, MIGHTY Sterilized
φ5×3mm
25 pcs/bottle Visit distributor’s
web page
CSM-50 Atelocollagen Sponge, MIGHTY Sterilized
φ5×3mm
50 pcs/bottle Visit distributor’s
web page

Storage: Room temperature  For research use only.

Click here for frequently asked questions about MIGHTY

Use case

References

  • Bone, Tooth, Cartilage
  • Skin, Miscellaneous
    • Tacrolimus, FK506, promotes bone formation in bone defect mouse model.
      Nishida S, Azetsu Y, Chatani M, Karakawa A, Otake K, Sugiki H, Sakai N, Maruoka Y, Myers M, Takami M.
      J Oral Biosci. 2024 Feb 13:S1349-0079(24)00016-1. PMID: 38360372.
    • Effect of CD146+ SHED on bone regeneration in a mouse calvaria defect model.
      Rikitake K, Kunimatsu R, Yoshimi Y, Nakajima K, Hiraki T, Aisyah Rizky Putranti N, Tsuka Y, Abe T, Ando K, Hayashi Y, Nikawa H, Tanimoto K.
      Oral Dis. 2023 Mar;29(2):725-734. PMID: 34510661.
    • Three-dimensional Culture Using Atelocollagen Sponge and Self-assembling Peptide Hydrogel.
      Shiga T, Kato H, Saito A, Onodera S, Shibahara T, Takano M, Azuma T。
      Bull Tokyo Dent Coll. 2023 Jun 10;64(2):43-54. PMID: 37183012.
    • Introduction of tenomodulin by gene transfection vectors for rat bone tissue regeneration.
      Wang H, Tenkumo T, Nemoto E, Kanda Y, Ogawa T, Sasaki K.
      Regen Ther. 2023 Jan 12;22:99-108. PMID: 36712960.
    • Effect of compression on mandibular fracture haematoma-derived cells.
      Arimoto S, Hasegawa T, Iwata E, Takeda D, Akashi M.
      Br J Oral Maxillofac Surg. 2022 Nov;60(9):1216-1223.
      PMID: 35811262.
    • Knee meniscus regeneration using autogenous injection of uncultured adipose tissue-derived regenerative cells.
      Itose M, Suzawa T, Shibata Y, Ohba S, Ishikawa K, Inagaki K, Shirota T, Kamijo R.
      Regen Ther. 2022 Sep 24;21:398-405. PMID: 36196448.
    • Combination of Carbonate Hydroxyapatite and Stem Cells from Human Deciduous Teeth Promotes Bone Regeneration by Enhancing BMP-2, VEGF and CD31 Expression in Immunodeficient Mice.
      Putranti NAR, Kunimatsu R, Rikitake K, Hiraki T, Nakajima K, Abe T, Tsuka Y, Sakata S, Nakatani A, Nikawa H, Tanimoto K.
      Cells. 2022 Jun 13;11(12):1914. PMID: 35741043.
    • Cyclic compressive mechanical loading on three­dimensional cultured tissue of human chondrocytes synergistically upregulates MMP­-3 gene expression with IL­-1β.
      Minami HIKIDA, Masahiro NAKAJIMA, Ken NAKATA,
      Journal of Osaka Dental University, 2021, 55 巻, 1 号, p. 91-98.
    • Integrin α2β1 plays an important role in the interaction between human articular cartilage-derived chondrocytes and atelocollagen gel.
      Kanamoto T, Hikida M, Sato S, Oyama S, Tachi Y, Kuroda S, Mazuka T, Ebina K, Nakai T, Nakata K.
      Sci Rep. 2021 Jan 19;11(1):1757. PMID: 33469078
    • Axial mechanical loading to ex vivo mouse long bone regulates endochondral ossification and endosteal mineralization through activation of the BMP-Smad pathway during postnatal growth.
      Miyamoto S, Yoshikawa H, Nakata K.
      Bone Rep. 2021 May 7;15:101088. PMID: 34141832
    • Osteogenic Response to Polysaccharide Nanogel Sheets of Human Fibroblasts After Conversion Into Functional Osteoblasts by Direct Phenotypic Cell Reprogramming.
      Nakai K, Yamamoto K, Kishida T, Kotani SI, Sato Y, Horiguchi S, Yamanobe H, Adachi T, Boschetto F, Marin E, Zhu W, Akiyoshi K, Yamamoto T, Kanamura N, Pezzotti G, Mazda O.
      Front Bioeng Biotechnol. 2021 Sep 3;9:713932. PMID: 34540813.
      線維芽細胞をマイティーに播種し、骨芽細胞へ直接分化。
    • Physiologic Mechanical Stress Directly Induces Bone Formation by Activating Glucose Transporter 1 (Glut 1) in Osteoblasts, Inducing Signaling via NAD+-Dependent Deacetylase (Sirtuin 1) and Runt-Related Transcription Factor 2 (Runx2).
      Somemura S, Kumai T, Yatabe K, Sasaki C, Fujiya H, Niki H, Yudoh K.
      Int J Mol Sci. 2021 Aug 23;22(16):9070. PMID: 34445787.
    • Comparing the Osteogenic Potential and Bone Regeneration Capacities of Dedifferentiated Fat Cells and Adipose-Derived Stem Cells In Vitro and In Vivo: Application of DFAT Cells Isolated by a Mesh Method.
      Takabatake K, Matsubara M, Yamachika E, Fujita Y, Arimura Y, Nakatsuji K, Nakano K, Nagatsuka H, Iida S.
      Int J Mol Sci. 2021 Nov 17;22(22):12392. PMID: 34830277.
    • Compressive mechanical stress enhances susceptibility to interleukin-1 by increasing interleukin-1 receptor expression in 3D-cultured ATDC5 cells.
      Takeda Y, Niki Y, Fukuhara Y, Fukuda Y, Udagawa K, Shimoda M, Kikuchi T, Kobayashi S, Harato K, Miyamoto T, Matsumoto M, Nakamura M.
      BMC Musculoskelet Disord. 2021 Mar 1;22(1):238. PMID: 33648469
    • Neural crest-derived cells in nasal conchae of adult mice contribute to bone regeneration.
      Yoshida H, Suzawa T, Shibata Y, Takahashi M, Kawai R, Takami M, Maki K, Kamijo R.
      Biochem Biophys Res Commun. 2021 Mar 30;554:173-178. PMID: 33798944.
    • Stem cell-derived conditioned media from human exfoliated deciduous teeth promote bone regeneration.
      Hiraki T, Kunimatsu R, Nakajima K, Abe T, Yamada S, Rikitake K, Tanimoto K.
      Oral Dis. 2020 Mar;26(2):381-390. PMID: 31808229
    • ROCK inhibitors enhance bone healing by promoting osteoclastic and osteoblastic differentiation.
      Nakata J, Akiba Y, Nihara J, Thant L, Eguchi K, Kato H, Izumi K, Ohkura M, Otake M, Kakihara Y, Saito I, Saeki M.
      Biochem Biophys Res Commun. 2020 Jun 4;526(3):547-552. PMID: 32192772.
    • Effects of intermittent treatment with parathyroid hormone (PTH) on osteoblastic differentiation and mineralization of mouse induced pluripotent stem cells in a 3D culture model.
      Sato M, Aoki H, Nakamura T, Onodera S, Yamaguchi A, Saito A, Azuma T.
      J Periodontal Res. 2020 Oct;55(5):734-743. PMID: 32583900
    • Gene transfection achieved by utilizing antibacterial calcium phosphate nanoparticles for enhanced regenerative therapy.
      Xiang C, Tenkumo T, Ogawa T, Kanda Y, Nakamura K, Shirato M, Sokolova V, Epple M, Kamano Y, Egusa H, Sasaki K.
      Acta Biomater. 2021 Jan 1;119:375-389. PMID: 33166711.
    • Effect of the combined use of enamel matrix derivative and atelocollagen sponge scaffold on osteoblastic differentiation of mouse induced pluripotent stem cells in vitro.
      Hisanaga Y, Suzuki E, Aoki H, Sato M, Saito A, Saito A, Azuma T.
      J Periodontal Res. 2018 Apr;53(2):240-249. PMID: 29044527
    • Elevated expression of Dkk-1 by glucocorticoid treatment impairs bone regenerative capacity of adipose tissue-derived mesenchymal stem cells.
      Kato T, Khanh VC, Sato K, Kimura K, Yamashita T, Sugaya H, Yoshioka T, Mishima H, Ohneda O.
      Stem Cells Dev. 2018 Jan 15;27(2):85-99. PMID: 29084466
    • Effect of cyclic compressive loading on redifferentiation of human chondrocytes in three-dimensional cultured tissue.
      Tomoko Okamoto, Kenji Kakudo, Yuichi Ohnishi, Masahiro Nakajima, Ken nakata
      J Osaka Dent Univ. 2017 (April);51(1), 23-30.
    • Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions.
      Zujur D, Kanke K, Lichtler AC, Hojo H, Chung UI, Ohba S.
      Sci Adv. 2017 May 12;3(5):e1602875. PMID: 28508073
    • Osteogenic potential of recombinant human bone morphogenetic protein-9/absorbable collagen sponge (rhBMP-9/ACS) in rat critical size calvarial defects.
      Nakamura T, Shirakata Y, Shinohara Y, Miron RJ, Furue K, Noguchi K.
      Clin Oral Investig. 2017 Jun;21(5):1659-1665. PMID: 27726024
    • Bone healing capabilities of recombinant human bone morphogenetic protein-9 (rhBMP-9) with a chitosan or collagen carrier in rat calvarial defects.
      Shinohara Y, Nakamura T, Shirakata Y, Noguchi K.
      Dent Mater J. 2016;35(3):454-60. PMID: 27252002
    • Bone formation by human umbilical cord perivascular cells.
      Kajiyama S, Ujiie Y, Nishikawa S, Inoue K, Shirakawa S, Hanada N, Liddell R, Davies JE, Gomi K.
      J Biomed Mater Res A. 2015 Aug;103(8):2807-14. PMID: 25676366
    • Chondrocyte differentiation of human buccal fat pad-derived dedifferentiated fat cells and adipose stem cells using an atelocollagen sponge.
      Nishio Akihiro, Kubo Hirohito, Kishimoto Naotaka, Hashimoto Yoshiya, Kakudo Kenji.
      J Osaka Dent Univ. 2015 (October);49(2), 185-196.
    • Celecoxib down-regulates mechanically induced ADAMTS-4 gene expression in 3D cultured tissue of human synovium-derived cells at lower concentration than indomethacin.
      M Kondo, K Nakata, K Kakudo.
      J Osaka Dent Univ. 2014 April; 48(1), 55-59.
    • Biodistribution of locally or systemically transplanted osteoblast-like cells.
      Okabe YT, Kondo T, Mishima K, Hayase Y, Kato K, Mizuno M, Ishiguro N, Kitoh H.
      Bone Joint Res. 2014 Mar 20;3(3):76-81. PMID: 24652780
    • Cyclic compressive loading on 3D tissue of human synovial fibroblasts upregulates prostaglandin E2 via COX-2 production without IL-1β and TNF-α.
      Shimomura K, Kanamoto T, Kita K, Akamine Y, Nakamura N, Mae T, Yoshikawa H, Nakata K.
      Bone Joint Res. 2014 Sep;3(9):280-8. PMID: 25237168
    • Optimal cyclic compressive loading promotes differentiation of 3D-cultured pre-osteoblasts.
      K Ota, Y Muroi, K Kakudo, K Nakata.
      J Osaka Dent Univ. 2013 (April);47(1):117-125.
    • Enhanced in vivo osteogenesis by nanocarrier-fused bone morphogenetic protein-4.
      Shiozaki Y, Kitajima T, Mazaki T, Yoshida A, Tanaka M, Umezawa A, Nakamura M, Yoshida Y, Ito Y, Ozaki T, Matsukawa A.
      Int J Nanomedicine. 2013;8:1349-60. PMID: 23630418
    • Prolonged matrix metalloproteinase-3 high expression after cyclic compressive load on human synovial cells in three-dimensional cultured
      tissue.
      Akamine Y, Kakudo K, Kondo M, Ota K, Muroi Y, Yoshikawa H, Nakata K.
      Int J Oral Maxillofac Surg. 2012 Jul;41(7):874-81. PMID:22264498
    • Effects of Compressive Loading on Human Synovium-derived cells.
      Muroi Y, Kakudo K, Nakata K.
      J Dent Res. 2007 Aug;86(8):786-91. PMID: 17652211
    • A study on optimum orthodontic force using human periodontal ligament cells on 3D culture system.
      Meri Haniu, Takenori Kim, Yoshiaki Satho and Junichiro Ida.
      Hokkaido J. Dent. Sci., 34:97-105,2014.
    • Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C.
      Hatano Y, Nakahama KI, Isobe M, Morita I.
      Biochem Biophys Res Commun. 2014 Mar 28;446(1):149-54. PMID: 24607909
    • Effect of strain on human dermal fibroblasts in a three-dimensional collagen sponge.
      Hara M, Fujii T, Hashizume R, Nomura Y.
      Cytotechnology. 2014 Oct;66(5):723-8. PMID: 24096838
    • Biological responses of three-dimensional cultured fibroblasts by sustained compressive loading include apoptosis and survival activity.
      Kanazawa T, Nakagami G, Minematsu T, Yamane T, Huang L, Mugita Y, Noguchi H, Mori T, Sanada H.
      PLoS One. 2014 Aug 7;9(8):e104676. PMID: 25102054